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Extremal optimization for graph partitioning
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Extremal optimization is a new general-purpose method for approximating solutions to hard optimization
problems. We study the method in detail by way of the computationally hard~NP-hard! graph partitioning
problem. We discuss the scaling behavior of extremal optimization, focusing on the convergence of the average
run as a function of run time and system size. The method has a single free parameter, which we determine
numerically and justify using a simple argument. On random graphs, our numerical results demonstrate that
extremal optimization maintains consistent accuracy for increasing system sizes, with an approximation error
decreasing over run time roughly as a power lawt20.4. On geometrically structured graphs, the scaling of
results from theaveragerun suggests that these are far from optimal with large fluctuations between individual
trials. But when only thebestruns are considered, results consistent with theoretical arguments are recovered.
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I. INTRODUCTION

Optimizing a system of many variables with respect
some cost function is a task frequently encountered in ph
ics. The determination of ground-state configurations in d
ordered materials@1–4# and of fast-folding protein confor
mations@5# are but two examples. In cases where the relat
between individual components of the system is frustra
@6#, the cost function often exhibits a complex ‘‘landscap
@7# in configuration space, posing challenges to neighb
hood search procedures. Indeed, for growing system size
cost function may exhibit a rapidly increasing number
unrelated local extrema, separated by sizable barriers
can make the search for the exact optimal solution unrea
ably costly. It is of great importance to develop fast a
reliable approximation methods for finding optimal or a
ceptable near-optimal solutions with high probability.

In recent papers we have introduced a new method, ca
extremal optimization~EO!, to tackle such hard optimizatio
problems@8,9#. EO is based on the dynamics of nonequili
rium processes and in particular those exhibiting s
organized criticality@10#, where better solutions emerge d
namically without the need for parameter tuning. Previou
we have discussed the basic EO algorithm, its origin, and
performance compared with other methods. We have dem
strated that the algorithm can be adapted to a wide variet
computationally hard problems@11#. We have shown that fo
the graph partitioning problem, a simple implementation
EO yields state-of-the-art solutions, even for systems oN
.105 variables@8#. For large graphs of low connectivity, EO
has been shown to be faster than genetic algorithms@12# and
more accurate than simulated annealing@13#, two other
widely applied methods. A numerical study@14# has shown
that EO’s performance relative to simulated annealing is p
ticularly strong in the neighborhood of phase transitio
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‘‘where the really hard problems are’’@15#. In fact, prelimi-
nary studies of the phase transition in the three-color
problem @16# as well as studies of ground-state configu
tions in spin glasses@3,17# suggest that EO may become
useful tool in the exploration of low-temperature propert
of disordered systems.

In the present work we focus on the intrinsic features
the method by investigating its average performance. For
purpose, we have conducted an extensive numerical stud
EO on the graph bipartitioning problem. We consider vario
kinds of graph ensembles, both with geometric and with r
dom structure, for an increasing number of verticesN. The
results show that for random graphs, EO converges towa
the optimal configuration in a power-law manner, typica
requiring no more thanO(N) update steps. For geometr
graphs the averaged large-N results are less convincing, bu
if we instead focus on the best out of several trials, ne
optimal results emerge. Our implementation of EO has o
single tunable parameter, and we find a simple relation
estimate that parameter given the allowed run time and
tem size. Many of our numerical results here have been
dependently confirmed by Dall@18#.

The paper is organized as follows. In Sec. II we introdu
the graph bipartitioning problem, and in Sec. III we descr
the extremal optimization algorithm. Section IV deals in d
tail with our numerical results. In Sec. V we conclude wi
an outlook on future work.

II. GRAPH BIPARTITIONING

A. Definition

The graph bipartitioning problem~GBP! is easy to formu-
late. TakeN vertices, whereN is an even number and wher
some of the vertex pairs are connected by an edge. T
divide the vertices into two sets of equal measureN/2 such
that the number of edges connecting both sets, the ‘‘cut s
m, is minimized. The global constraint of an equal divisio
of vertices makes the GBP an NP-hard problem, i.e., de
©2001 The American Physical Society14-1
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mining the exact solution with certainty would in genera
require a computational effort growing faster than any pow
of N @19#. It is thus important to find ‘‘heuristic’’ methods
that can obtain goodapproximatesolutions in polynomial
time. Typical examples of applications of graph partitioni
are the design of integrated circuits~VLSI! @20# and the par-
titioning of sparse matrices@21#.

The general description of a graph in the previous pa
graph is usually cast in more specific terms, defining an
semble of graphs with certain characteristics. These cha
teristics can affect the optimization problem drastically, a
often reflect real-world desiderata such as the geometric
out of circuits or the random interconnections in matric
Therefore, let us consider a variety of different graph e
sembles, some random and some geometric in structure

B. Classes of graphs studied

One class of graphs that has been studied extensive
the G(N,p) model of random graphs without geometr
structure@22#. Here, an edge between any two of the vertic
is taken to exist with probabilityp; on the average, an in
stance has a total ofpN(N21)/2 edges and the mean co
nectivity per vertex isa5p(N21). Following standard ter-
minology we refer to graphs of this sort as the ensemble
random graphs, even though the other classes of graphs
consider all have stochastic properties as well.

Another often-studied class of graphs without geome
structure is generated by placing connections randomly,
fixing the numbera of connections at each vertex@23,24#. In
particular, we consider the casea53: the ensemble oftriva-
lent graphs, randomly connected graphs with exactly thr
edges originating from each vertex.

The third class we consider is an ensemblewith geometric
structure, where the vertices are situated on a cubic lat
Edges are placed so as to connect some~but not all! nearest
neighbors on the lattice; a fractionx of all nearest-
neighboring pairs are occupied by an edge, and those e
are distributed at random over the possible pairs. For a c
lattice, the average connectivity is then given bya56x. This
class of graphs corresponds to a dilute ferromagnet, wh
each lattice site holds a6-spin and some~but not all!
nearest-neighboring spins possess a coupling of
strength. Here, the GBP amounts to the equal partitioning
1 and2 spins while minimizing the interface between th
two types@25#, or simply finding the ground state under fixe
~zero! magnetization. We refer to this class as the ensem
of ferromagnetic graphs.

The final class we consider is that of geometric grap
specified byN randomly distributed vertices in the two
dimensional unit square, with edges between all vertex p
separated by a distance of no more thand @26#. The average
connectivity isa5Npd2. The GBP on this class of graph
has the advantage of a simple visual representation, show
Fig. 1. Again following standard terminology, we refer to th
class simply as the ensemble ofgeometric graphs.

It is known that graphs without geometric structure, su
as those in the first two classes, are typically easier to o
mize than those with geometric structure, such as those in
02611
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final two classes@26#. The characteristics of the GBP fo
nongeometric and geometric graphs at low connectivity
pear to be very different due to the dominance of long loo
in the former and short loops in the latter. The ensemble
random graphs has a structure that is locally treelike, allo
ing for a mean-field treatment that yields some exact res
@25#. By contrast, the ensemble of geometric graphs co
sponds to continuum percolation of ‘‘soft’’~overlapping!
circles, for which precise numerical results exist@27#.

Each of the graph ensembles that we consider is cha
terized by a control parameter, the average connectivitya.
The difficulty of the optimization problem for each type va
ies significantly witha. In this study we focus on spars
graphs for whicha is kept constant, independent ofN.
Sparse graphs have very different properties from the de
graphs studied by Fu and Anderson@28#. These sparse graph
are generally considered to pose the most difficult partiti
ing problems, and our EO algorithm is particularly compe
tive in this regime@14#. In order to facilitate a study of EO’s
average performance, we fixa to a given value on each
ensemble. For random graphs, where the connectivity va
among vertices according to a Poisson distribution, fixa
5p(N21)52. For trivalent graphs, by constructiona53.
For ferromagnetic graphs, fixa56x52. For geometric
graphs, fixa5Npd256. In all of these cases, the conne
tivity is chosen to be just above the phase transition atacrit ,
below which the cut sizem almost always vanishes@14#.
These critical regions are especially interesting because
have been found to coincide with the hardest-to-solve
stances in many combinatorial optimization problem
@15,29#.

Finally, in light of the numerous comparisons in the phy
ics literature between the GBP and the problem of find
ground states of spin glasses@1#, it is important to point out
the main difference. This is highlighted by the ensemble
ferromagnetic graphs. Since couplings between spins

FIG. 1. A geometric graph withN5500 vertices and averag
connectivitya56, partitioned into 250 square and 250 circle ve
tices. Starting from an initial random assignment of squares
circles, EO arrives at near-optimal configurations consisting of
mains of squares and circles, separated by an interface across w
‘‘bad’’ edges ~thickened lines! connect poorly adapted vertices.
4-2
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EXTREMAL OPTIMIZATION FOR GRAPH PARTITIONING PHYSICAL REVIEW E64 026114
purely ferromagnetic, all connected spins invariably wou
like to be in the same state; there is no local frustrati
Frustration in the GBP arises merely from theglobal con-
straint of an equal partition, forcing spins along an interfa
to attain an unfavorable state~see Fig. 1!. All other spins
reside in bulk regions where they can maintain the same s
as their neighbors. In a spin glass, on the other hand, c
plings can be both ferromagnetic and antiferromagne
Spins everywhere have to compromise according to confl
ing conditions imposed by their neighbors; frustration is
cal rather than global.

C. Basic scaling arguments

If we neglect the fact that the structure of sparse graph
that of percolation clusters, we can obtain some elemen
insights into the expected scaling behavior of the optimal
size with increasing sizeN, m;N1/n. For graphs without
geometric structure~random graph ensemble and trivale
graph ensemble!, one can expect that the cut size shou
grow linearly inN, i.e., n51. Indeed, this argument can b
made rigorous for arbitrary fixed connectivitya. Extremal
optimization performs very well on these graphs, and pre
ous numerical studies using EO all given'1 @14#.

For graphs with geometric structure~ferromagnetic graph
ensemble and geometric graph ensemble!, the value ofn is
less clear. We can approximate a graph with ad-dimensional
geometric structure as a hypercubic lattice of lengthL
5N1/d, where the lattice sites are the vertices of the gra
and the nearest-neighbor bonds are the edges, of which
a finite fraction are occupied. There are thus;N edges in the
graph. To partition it, we are roughly looking for
(d21)-dimensional hyperplane cutting the graph into tw
equal-sized sets of vertices. Such an interface between
partitions would cut;Ld21 bonds, and thus;N121/d edges.
Following this argument, the three-dimensional~3D! ferro-
magnetic graphs should have a cut size scaling withN2/3 and
the 2D geometric graphs should have a cut size scaling
N1/2.

However, while this may be the case for a typical partiti
of the graph, it may not be the case for anoptimal partition.
The interface for an optimal cut of a sparse graph could w
be much rougher than our argument suggests, taking ad
tage of large voids between clusters of connected verti
The number of cut edges would then be below the estim
based on assuming a flat interface, making 1/n,121/d. In
our previous studies using EO, however, we found 1n
'0.7560.05 for ferromagnetic graphs and 1/n'0.660.1 for
geometric graphs@14#, i.e., above the upper bound, and o
newer results do not improve on these~seen later in Fig. 6!.
This could indicate that the actual values are close to
upper bound, but also that for graphs with geometric str
ture EO fails to find the optima on instances of increas
size.

Similar behavior has been observed with other lo
search methods@26#, reflecting the fact that sparse geomet
graphs generally pose a much greater challenge than
sparse random graphs. In contrast, a heuristic such asMETIS

@30#, a hierarchical decomposition scheme for partitioni
02611
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problems, works better for geometric graphs than for rand
graphs@31#. METIS performs particularly well for sparse geo
metric graphs, and typically produces better results than
for a56. Furthermore, if speed is the dominant requireme
METIS is superior to any local search method by at leas
factor of N. But for random graphs ata52 or the trivalent
graphs,METIS’ results are poor compared to EO’s, and for a
type of graphsMETIS’ performance deteriorates with increa
ing connectivity.

III. EXTREMAL OPTIMIZATION ALGORITHM

A. Motivation

The extremal optimization method originates from i
sights into the dynamics of nonequilibrium critical phenom
ena. In particular, it is modeled after the Bak-Snepp
mechanism@32#, which was introduced to describe the d
namics of co-evolving species.

Species in the Bak-Sneppen model are located on the
of a lattice, and each one has a ‘‘fitness’’ represented b
value between 0 and 1. At each update step, the sma
value ~representing the most poorly adapted species! is dis-
carded and replaced by a new value drawn randomly fro
flat distribution on@0,1#. Without any interactions, all the
fitnesses in the system would eventually approach 1.
obvious interdependencies between species provide
straints for balancing the system’s overall condition with th
of its members: the change in fitness of one species imp
the fitness of an interrelated species. Therefore, at each
date step, the Bak-Sneppen model replaces the fitness v
on the sitesneighboringthe smallest value with new random
numbers as well. No explicit definition is provided for th
mechanism by which these neighboring species are rela
Nevertheless, after a certain number of updates, the sys
organizes itself into a highly correlated state known as s
organized criticality@10#. In that state, almost all specie
have reached a fitness above a certain threshold. Yet t
species merely possess what is called punctuated equilib
@33#: since only one’s weakened neighbor can underm
one’s own fitness, long periods of ‘‘stasis,’’ with a fitne
above the threshold, are inevitably punctuated by bursts
activity. This co-evolutionary activity cascades in a cha
reaction ~‘‘avalanche’’! through the system. These fluctu
tions can involve any number of species, up to the en
system, making any possible configuration accessible. Du
the extremal nature of the update, however, the system
whole will return to states in which practically all species a
above the threshold.

In the Bak-Sneppen model, the high degree of adapta
of most species is obtained by the elimination of poo
adapted ones rather than by a particular ‘‘engineering’’
better ones. While such dynamics might not lead to as o
mal a solution as could be engineered under specific circ
stances, it provides near-optimal solutions with a high deg
of latency for a rapid adaptation response to changes in
resources driving the system. A similar mechanism, based
the Bak-Sneppen model, has recently been proposed to
scribe adaptive learning in the brain@34#.
4-3
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STEFAN BOETTCHER AND ALLON G. PERCUS PHYSICAL REVIEW E64 026114
B. Algorithm description

Inspired by the Bak-Sneppen mechanism, we have
vised the EO algorithm with the goal of accessing ne
optimal configurations for hard optimization problems usi
a minimum of external control. Previously, we have demo
strated that the EO algorithm is applicable to a wide vari
of problems@11,17#. Here, we focus on its implementatio
for the GBP.

In the GBP, EO@8# considers each vertex of a graph as
individual variable with its own fitness parameter. It assig
to each vertexi a ‘‘fitness’’

l i5gi /~gi1bi !, ~1!

where gi is the number of ‘‘good’’ edges connectingi to
other vertices within its same set, andbi is the number of
‘‘bad’’ edges connectingi to vertices across the partition
~For unconnected vertices we fixl i51.! Note that vertexi
has an individual connectivity ofa i5gi1bi , while the over-
all mean connectivity of a graph is given bya5( ia i /N and
the cut size of a configuration is given bym5( ibi /2.

At all times an ordered list is maintained in the form of
permutationP of the vertex labelsi such that

lP(1)<lP(2)<•••<lP(N) , ~2!

and i 5P(k) is the label of thekth ranked vertex in the list
Feasible configurations haveN/2 vertices in one set an

N/2 in the other. To define a local search of the configurat
space, we must define a ‘‘neighborhood’’ for each configu
tion within this space@35#. The simplest such neighborhoo
for the GBP is given by an exchange of~any! two vertices
between the sets. With this exchange at each update we
searchthe configuration space by moving from the curre
configuration to a neighboring one. In close analogy with
Bak-Sneppen mechanism, our original zero-parameter im
mentation of EO simply swapped the vertex with the wo
fitness,P(1), with a random vertex from the opposite s
@8#. Over the course of a run withtmax update steps, the cu
size of the configurations explored varies widely, since e
update can result in better or worse fitnesses. Proceedin
with the gap equation in the Bak-Sneppen model@36#, we
define a functionm(t) to be the cut size of thebestconfigu-
ration seen during this run up to timet. By constructionm(t)
is monotonically decreasing, andm(tmax) is the output of a
single run of the EO algorithm.

We find that somewhat improved results are obtained w
the following one-parameter implementation of EO. At ea
update step, draw two integers, 1<k1 ,k2<N, from a prob-
ability distribution

P~k!}k2t ~1<k<N! ~3!

for some t. Then pick the verticesi 15P(k1) and i 2
5P(k2) from the rank-ordered list of fitnesses in Eq.~2!.
~We repeatedly drawk2 until we obtain a vertex in the op
posite set fromk1.! Let verticesi 1 and i 2 exchange setsno
matter whatthe resulting new cut size may be. Then, r
evaluate the fitnessesl for i 1 , i 2, and all vertices they are
connected to (2a on average!. Finally, reorder the ranked lis
02611
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of l ’s according to Eq.~2! and start the process over agai
Repeat this procedure for a number of update steps per
that is linear in system size,tmax5AN, and store the bes
result generated along the way. Note that no scales to l
fluctuations are introduced into the process, since the se
tion follows the scale-free power-law distributionP(k) in
Eq. ~3! and since—unlike in heat bath methods—all mov
are accepted. Instead of a global cost function, the ra
ordered list of fitnesses provides the information about o
mal configurations. This information emerges in a se
organized manner merely by selecting with a biasagainst
badly adapted vertices, rather than ever ‘‘breeding’’ bet
ones.

C. Discussion

1. Definition of fitness

We now discuss some of the finer details of the algorith
First of all, we stress that we use the term ‘‘fitness’’ in th
sense of the Bak-Sneppen model, in marked contrast to
meaning in genetic algorithms. Genetic algorithms consi
a population of configurations and assign a fitness value
an entire configuration. EO works with only a single co
figuration and makes local updates to individual variab
within that configuration. Thus, it is important to reitera
that EO assigns a fitnessl i to each of the system’sN vari-
ables, rather than to the system as a whole.

While the definition of fitness in Eq.~1! for the graph
partitioning problem seems natural, it is by no means uniq
In fact, in general the sum of the fitnesses does not e
represent the cost function we set out to optimize, beca
each fitness is locally normalized by the total number
edges touching that vertex. It may seem more appropriat
define fitness instead asl i5gi , the number of ‘‘good’’ con-
nections at a vertex, or else asl i52bi , which amounts to
penalizing a vertex for its number of ‘‘bad’’ connections.
both cases, the sum of all the fitnesses is indeed line
related to the actual cost function. The first of these choi
leads to terrible results, since almost all vertices in ne
optimal configurations have only good edges, and so in m
casesgi is simply equal to the connectivity of the vertex. Th
second choice does lead to a viable optimization proced
and one that is easily generalizable to other problems, as
have shown elsewhere@11#. But for the GBP, we find that the
results from that fitness definition are of poorer quality th
those we present in this paper. It appears productive to c
sider all vertices in the GBP on an equal footing by norm
izing their fitnesses by their connectivity as in Eq.~1! so that
l iP@0,1#. Each vertex’s pursuit towards a better fitness
multaneously minimizes its own contribution to the total co
function, ensuring that EO always returns sufficiently clo
to actual minima of the cost function.

Note that ambiguities similar to that of the fitness defi
tion also occur for other optimization methods. In gener
there is a large variety of different neighborhoods to cho
from. Furthermore, to facilitate a local neighborhood sear
cost functions often have to be amended to contain pen
terms. It has long been known@26# that simulated annealing
for the GBP only becomes effective when one allows
4-4
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EXTREMAL OPTIMIZATION FOR GRAPH PARTITIONING PHYSICAL REVIEW E64 026114
balanced partition constraint to be violated, using an ex
term in the cost function to represent unbalanced partition
the cost function. Controlling this penalty term requires
additional parameter and additional tuning, which E
avoids.

2. The parametert

Indeed, there is only one parameter, the exponentt in the
probability distribution in Eq.~3!, governing the update pro
cess and consequently the performance of EO. It is intui
that a value oft should exist that optimizes EO’s averag
case performance. Ift is too small, vertices would be picke
purely at random with no gradient towards any good pa
tions. If t is too large, only a small number of vertices wi
particularly bad fitness would be chosen over and over ag
confining the system to a poor local optimum. Fortunate
we can derive an asymptotic relation that estimates a suit
value for t as a function of the allowed run time and th
system sizeN. The argument is actuallyindependentof the
optimization problem under consideration and is ba
merely on the probability distribution in Eq.~3! and the er-
godicity properties that arise from it.

We have observed numerically that the choice of an o
mal t coincides with the transition of the EO algorithm fro
ergodic to nonergodic behavior. But what do we mean
‘‘ergodic’’ behavior, when we are not in an equilibrium situ
ation? Consider the rank-ordered list of fitnesses in Eq.~2!,
from which we choose the individual variables to be u
dated. Ift50, we choose variables at random and can re
every possible configuration of the system with equal pr
ability. EO’s behavior is then perfectly ergodic. Converse
if t is very large, there will be at least a few variables th
may never be touched in a finite run timet because they are
already sufficiently fit and high in rankk. Hence, if there are
configurations of the system that can only be reached
altering these variables first, EO will never explore them a
accordingly is nonergodic. Of course, for any finitet, differ-
ent configurations will be explored by EO with differe
probabilities. But we argue that phenomenologically, we m
describe EO’s behavior as ergodic provided that every v
able, and hence every rank on the list, gets selected at
once during a single run. There will be a value oft at which
certain ranks, and therefore certain variables, will no lon
be selected with finite probability during a given run tim
We find that this value oft at the transition to nonergodi
behavior corresponds roughly with the value at which E
displays its best performance.

Assuming that this coincidence indicates a causal rela
between the ergodic transition and optimal performance,
can estimate the optimalt in terms of run timet and sizeN.
EO uses a run timetmax5AN, whereA is a constant, typi-
cally much larger than 1 but much smaller thanN. ~For a
justification of the run time scaling linearly inN, see Sec.
IV C 2.! We argue that we are at the ‘‘edge of ergodicit
when duringAN update steps we have a chance of selec
even the highest rank in EO’s fitness list,k5N, about once,
so that

P~k5N!AN;1. ~4!
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With the choice of the power-law distribution forP(k) in Eq.
~3!, suitably normalized,

~t21!N2tAN;1 ~N→`!. ~5!

Asymptotically, we find

t;11
ln~A/ lnN!

lnN
~N→`,1!A!N!. ~6!

Of course, large higher-order corrections may exist, a
there may well be deviations in the optimalt among differ-
ent classes of graphs since this argument does not take
account graph structure or even the problem at hand. Ne
theless, Eq.~6! gives a qualitative understanding of how
chooset, indicating, for instance, that it varies very slow
with N andA but will most likely be significantly larger than
its asymptotic value of unity. Not surprisingly, with the nu
merical valuesA'102 andN'104 used in previous studies
we typically have observed optimal performance fort'1.3
21.6 ~see also Ref.@18#!. Our numerical study oft is dis-
cussed in Sec. IV B below.@We note that in this study we
often use run times withA.N to probe the extreme long
time convergence behavior of EO. In that case, Eq.~6! can-
not be expected to apply. Yet, the optimal value oft still
increases withA, as will be seen in the numerical results
Sec. IV B and Fig. 3~a!.#

3. Efficient ranking of the fitness values

Strictly speaking, the EO algorithm as we have describ
it has a cost proportional to 2aN2lnN per run. One factor of
N arises simply from the fact that the run time, i.e., the nu
ber of update steps per run, is taken to scale linearly with
system size. The remaining factor of 2aNlnN arises from the
necessity to maintain the ordered list of fitnesses in Eq.~2!:
during each update, on average, 2a vertices change thei
fitnesses and need to be reordered since the two ver
chosen to swap partitions are each connected on averagea
other vertices. The cost of sequentially ordering fitness v
ues is, in principle,NlnN. However, to save a factor ofN, we
have instead resorted to an imperfect heap ordering of
fitness values as described in Ref.@8#. Ordering a list ofN
numbers in a binary tree or ‘‘heap’’ ensures that the smal
fitness will be at the root of the tree, but does not provid
perfect ordering between all of the other members of the
as a sequential ordering would. Yet, with high probabil
smaller fitnesses still reside in levels of the tree closer to
root, while larger fitnesses reside closer to the end node
the tree. To maintain such a tree only requiresO(lnN) moves
needed to replace changing fitness values.

Specifically, consider a list ofN fitness values. This list
will fill a binary tree with at mostl max11 levels, where
l max5@ log2(N)# (@x# denotes the integer part ofx) and l
50,1, . . . ,l max, wherel 50 is the level consisting solely o
the root, l 51 is the level consisting of the two elemen
extending from the root, etc. In general, thel th level contains
up to 2l elements, and all levels are completely filled exce
for the end-node levell max, which will only be partially
filled in caseN,2l max1121. Clearly, by definition, every
4-5
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FIG. 2. Cut size found by EO~in units of N) as a function oft at a fixed value ofA5t/N'500, averaged over all runs on all graph
of a given sizeN. Results are shown for~a! random graphs,~b! trivalent graphs,~c! ferromagnetic graphs, and~d! geometric graphs. For eac
type of graph the minimum shifts very slowly to smaller values oft for increasingN.
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fitness on thel th level is worse than its two descendants
the (l 11)th level, although there could be fitnesses on
l th level that are better than some of the other fitnesses
the (l 11)th ~or even greater! level. On average, however,
the fitnesses on thel th level are always worse than those
the (l 11)th level, and better than those on the (l 21)th
level.

Thus, instead of applying the probability distribution
Eq. ~3! directly to a sequentially ordered list, we save
entire factor ofN in the computational cost by using a
analogous~exponential! probability distribution on the~loga-
rithmic! number of levelsl in our binary tree,

Q~ l !}22(t21)l $0< l<@ log2~N!#11%. ~7!

From that levell we then choose one of the 2l fitnesses at
random and update the vertex associated with that fitn
value. Despite the differences in the implementations,
studies show that heap ordering and sequential ordering
duce quite similar results. In particular, the optimal value
t found for both methods is virtually indistinguishable. B
with the update procedure using the heap, EO algorithm r
at a cost of justO(2aNlnN).
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Under some circumstances, it may be possible to main
a partially or even perfectly ordered list at constant cost
using a hash table. For instance, for trivalent graphs or m
generally fora-valent graphs, each vertexi can be in only
one ofa11 attainable states,bi50,1, . . . ,a andl i5bi /a.
Thus, instead of time-consuming comparisons betweenl ’s,
fitness values can be hashed into and retrieved from ‘‘bu
ets,’’ each containing all vertices with a givenbi . For an
update, we then obtain ranks according to Eq.~3!, determine
which bucket that rank points to and retrieve one vertex
random from that bucket.

Even in cases where the fitness values do not fall ne
into a discrete set of states, such a hash table may b
effective approximation. But great care must be taken w
respect to the distribution of thel ’s. This distribution could
look dramatically different in an average configuration and
a near-optimal configuration, because in the latter case
ness values may be densely clustered about 1.

4. Startup routines

The results obtained during a run of a local search al
rithm can often be refined using an appropriate startup r
4-6
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FIG. 3. Plot oftopt for trivalent graphs as a function of~a! log2(A)5log2(t/N) for various fixed values ofN and~b! 1/log2(N) for various
fixed values ofA5t/N. These data points were determined by performing runs as in Fig. 2~b!, and finding the minimum of a quartic fit to
data obtained att51.2, 1.25, 1.3, . . . , 1.95. In~a! the data increase roughly linearly with log2(A) in the regime 1!A!N at fixedN, while
in ~b! the data extrapolate roughly towardt51 for N→` at fixedA, both in accordance with Eq.~6!. ForA&1 this scaling appears to brea
down, while forA*N the linear scaling happens to remain valid. Note that the values oftopt in ~b! correspond to the data points in~a! for
log2(A)55 and 8.
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tine. This is an issue of practical importance for any optim
zation method@35#. For instance, Ref.@26# has explored
improvements for the partitioning of geometric graphs
initially dividing the vertices of the graph into two geometr
cally defined regions~for instance, drawing a line throug
the unit square!. This significantly boosted the performanc
of the Kernighan-Lin algorithm on the graphs. Such metho
are not guaranteed to help, however, simulated annea
shows little improvement using a startup@26#. Happily, the
performance of the EO algorithmis typically improved with
a clever startup routine.

Previously, we have explored a startup routine usin
simple clustering algorithm@8#, which accomplishes the
separation of the graph into domains not only for geome
but also for random graphs. The routine picks a random
tex on the graph as a seed for a growing cluster, and re
sively incorporates the boundary vertices of the cluster u
N/2 vertices are covered or until no boundary vertices e
anymore~signaling a disconnected cluster in the graph!. The
procedure then continues with a new seed among the rem
ing vertices. Such a routine can substantially enhance E
convergence, particularly for geometrically defined grap
~see Sec. IV C 3!. In this paper, though, we didnot use any
startup procedure because we prefer to focus on the intri
features of the EO algorithm itself. Instead, all the resu
presented here refer to runs starting from random initial p
titions, except for a small comparison in Sec. IV C 3.

IV. NUMERICAL RESULTS

A. Description of EO runs

In our numerical simulations, we considered the fo
classes of graphs introduced in Sec. II. For each class
have studied the performance of EO as a function of the
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of the graphN, the run timet, and the parametert. To obtain
a statistically meaningful test of the performance of E
large values ofN were chosen; EO performed too well o
smaller graphs. The maximum value ofN varied with each
kind of graph, mostly due to the fact that some types
quired averaging over many more instances, thus limiting
attainable sizes.

The precise instance sizes wereN51022, 2046, 4094,
and 8190 for both random and trivalent graphs;N5133

(52197), 163(54096), and 203(58000) for ferromagnetic
graphs; andN5510, 1022, and 2046 for geometric graph

FIG. 4. Fraction of EO runs on geometric graphs that have co
within 20% of the best ever found~for each instance! as a function
of t for each value ofN. Maxima indicate optimal choice oft for
finding a few good results among many runs. These maxima o
at higher values oft than the minima corresponding to best avera
performance in Fig. 2.
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FIG. 5. Log-log plot of the cut size as a function of the number of update stepst for a single~large! instance of a~a! random,~b! trivalent,
~c! ferromagnetic, and~d! geometric graph. The solid line representsm(t) for a single run, and the shaded line with error bars represents
averagê m(t)& over all runs on that instance. In~a! and ~b!, error bars are very small, indicating that there are only small run-to
fluctuations about̂m(t)&. By contrast, in~c! and~d!, these run-to-run fluctuations are huge. In fact, for the geometric graph in~d! we have
plotted two separate solid lines representing two selected runs, one poor and one good one. This shows the large variations betwe
lead to the large error bars.
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For each class of graphs, we generated a number of insta
at each value ofN: 32 for random and trivalent graphs, 16 fo
ferromagnetic graphs, and 64 for geometric graphs. For e
instance, we conducted a number of EO runs: 8 for rand
and trivalent graphs, 16 for ferromagnetic graphs, and 64
geometric graphs. Finally, the run time~number of update
steps! used for each run wastmax5AN, with A5512 for
random graphs,A54096 for trivalent graphs,A51000 for
ferromagnetic graphs, andA52048 for geometric graphs.

B. Choosingt

In previous studies, we had chosent51.4 as the optimal
value for all graphs. In light of our discussion in Sec. III C
on how to estimatet, here we have performed repeated ru
over a range of values oft on the instances above usin
identical initial conditions. The goal is to investigate nume
cally the optimal value fort, and the dependence of EO
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results on the value chosen. In Figs. 2~a!–2~d! we show how
the average cut size depends ont, given a fixed run time.
There is a remarkable similarity in the qualitative perfo
mance of EO as a function oft for all types and sizes o
graphs. Despite statistical fluctuations, it is clear that ther
a distinct minimum for each class and that, as expected,
results get increasingly worse in all cases for smaller as w
as larger values oft.

While the optimal values fort are similar for all types of
graphs, there is a definite drift towards smaller values ot
for increasingN. Studies on spin glasses@17# have led to
similar observations, supporting the argument for the sca
of t that we have given in Sec. III C 2. Our data here do n
cover a large enough range inN to analyze in detail the
dependence oft on lnN. However, we can at least demon
strate that the results for trivalent graphs, where statist
errors are relatively small, are consistent with Eq.~6! above.
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EXTREMAL OPTIMIZATION FOR GRAPH PARTITIONING PHYSICAL REVIEW E64 026114
For fixedN but increasing values ofA5t/N, we see in Fig.
3~a! that the optimal value oft appears to increase linear
as a function of lnA in the regime 1!A!N. At the same
time, fixing A and increasingN, we see in Fig. 3~b! that the
optimal value oft appears to decrease linearly as a funct
of 1/lnN towards a value neart51. Thus, for 1!A!N, t
seems to be converging very slowly towards 1, with a fin
N correction of; lnA/ lnN. This is in accordance with ou
estimate, Eq.~6!, discussed earlier in Sec. III C 2.@Note that
at A'500 in Figs. 2~a! and 2~b!, the optimal values for ran
dom and trivalent graphs are close tot'1.3, consistent with
Eq. ~6!. In contrast, in our long-time studies below,A*N
and a value oft51.45 seems preferable, consistent with F
3~a!.#

The foregoing data, including the results plotted in Fi
2~a!–2~d!, arise from averageŝm(t)& over all runs~denoted
by ^¯&) and all instances~denoted by an overbar!. But it is
important to note that the conclusions drawn with respec
the optimal value oft from these plots are valid only if ther
is little difference between the average run^m(t)& and the
best runmbest for a particular instance. While this is the ca
for the random and trivalent graphs, there is a signific
difference between̂m(t)& and mbest for instances of ferro-
magnetic and geometric graphs, as is discussed later in
IV C 3. In fact, for geometric graphs~Fig. 6 below!, average
and best cut sizes often differ by a factor of 2 or 3. Figu
2~d! indicates that the optimal value oft for the average
performance on geometric graphs of sizeN52046 is below
t51.2. If we instead plot the fraction of runs that have com
say, within 20% of the best valuembest found by EO~which
most likely is still not optimal! for each instance, the optima
choice fort shifts to larger values,t'1.3 ~see Fig. 4!.

We may interpret this discrepancy as follows. At smal
values oft, EO is more likely to explore the basin of man
local minima but also has a smaller chance of descendin
the ‘‘bottom’’ of any basin. At larger values oft, all but a
few runs get stuck in the basin of a poor local minimu
~biasing the average! but the lucky ones have a great
chance of finding the better states. For geometric graphs
basins seem particularly hard to escape from, except at
very low values oft where EO is unlikely to move toward
the basin’s minimum. Thus, in such cases we find that we
better average performance^m(t)& at a lower value oft, but
the best resultmbest of multiple runs is obtained at a highe
value oft.

Clearly, in order to obtain optimal performance of E
within a given run time and for a given class of graph
further study of the best choice oft would be justified. But
for an analysis of the scaling properties of EO with run tim
andN, the specific details of how the optimalt varies are not
significant. Therefore, to simplify the following scaling di
cussion, we will fixt to a near-optimal value on each type
graph.

C. Scaling behavior

1. General results

As explained in Sec. III, the cut size of the current co
figuration fluctuates wildly at all times during an EO run a
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does not in itself converge. Instead, we have to keep trac
the best configuration obtained so far during a run. Thu
even for timest,tmax during an EO run, we refer to the cu
sizem(t) of the current best configuration as the ‘‘result’’ o
that run at timet. Examples of the stepwise manner in whic
m(t) converges towards the optimal cut size, for a particu
instance of each type of graph, are given in Fig. 5. Up u
timest;N, m(t) drops rapidly because each update rectifi
poor arrangements created by the random initial conditio
For timest@N, it takes collective rearrangements involvin
many vertices to~slowly! obtain further improvements.

While during each runm(t) decreases discontinuousl
for the random and trivalent graphs the jumps deviate re
tively little from that of the mean behavior obtained by a
eraging over many runs (^¯&). Fluctuations, shown by the
error bars in Figs. 5~a! and 5~b!, are small and will be ne-
glected henceforth. For the ferromagnetic and geome
graphs, these fluctuations can be enormous. In Fig. 6
compare the average performance^m& with the best perfor-
mancembest for each type of graph, at the maximal run tim
tmax and averaged over all instances at eachN. The results
demonstrate that for random and trivalent graphs the ave
and best results are very close, whereas for ferromagn
and geometric graphs they are far apart~with even the scal-
ing becoming increasingly different for the geometric cas!.
Therefore, in the following we will consider scaling of th
averageresults for the first two classes of graphs, but pro
erties of thebestresults for the latter two.

FIG. 6. Log-log plot of the cut sizêm&, averaged over all runs
and instances~filled symbols!, and the best cut sizembest from all
runs on an instance, averaged over all instances~open symbols!.
This is shown for random (s), trivalent (h), ferromagnetic (L),
and geometric graphs (n) as a function of sizeN. The error bars
refer only to run-to-run~and not instance-to-instance! fluctuations.
For random and trivalent graphs, both average and best cut s
scale linearly inN, as expected. For ferromagnetic and geome
graphs, the best results are several standard deviations better
the average results, with a widening gap for increasingN on the
geometric graphs. The scaling ofmbest;N1/n givesn51.3 for fer-
romagnetic graphs, and is consistent withn52 for geometric
graphs.
4-9



STEFAN BOETTCHER AND ALLON G. PERCUS PHYSICAL REVIEW E64 026114
FIG. 7. Log-log plot of the average cut sizem(N,t,t) as a function of run timet at fixedt51.45 for~a! random graphs and~b! trivalent
graphs. The average is taken over runs as well as over instances~32 instances for random and 8 instances for trivalent graphs!. Error bars
represent instance-to-instance fluctuations only, and increase withN much more slowly than the mean result. In each case,N increases from
bottom to top.
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2. Random and trivalent graphs

Averagingm(t) for any t over all runs (̂•••&) and over
all instances~overbar!, we obtain the average cut size

^m&5m~N,t,t! ~8!

as a function of sizeN, run timet, and parametert. In Fig. 7
we plotm(N,t,t) for random and trivalent graphs as a fun
tion of t, for eachN and at a fixed valuet51.45 that is near
the optimal value for the maximal run timestmax ~see Sec.
IV B !. The error bars shown here are due only to instan
to-instance fluctuations and are consistent with a normal
tribution around the mean.~Note that the error bars are dis
torted due to the logarithmic abscissa.! The fact that the
relative errors decrease withN demonstrates that self
averaging holds and that we need only focus on the mea
obtain information about the typical scaling behavior of
EO run.
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We wish to study the scaling properties of the functionm
in Eq. ~8!. First of all, we find that generally

m~N,t,t!;N1/nm̃~ t/N,t! ~ t@N@1!, ~9!

reflecting the fact that for EO, as well as for most other gra
partitioning heuristics that are based on local search,
times scale linearly withN. ~This is justified by the fact tha
each of theN variables only has 2 states to explore. In, s
the traveling salesperson problem, by contrast, each oN
cities can be reconnected toO(N) other cities, and so run
times typically scale at least withN2 @37#.! In Fig. 8 we plot
m(N,t,t)/N for fixed t51.45 as a function oft/N. We find
indeed that the data points from Fig. 7 collapse onto a sin
scaling curvem̃(t/N,t), justifying the scaling ansatz in Eq
~9! for n51. The scaling collapse is a strong indication th
EO converges inO(N) updates towards the optimal resu
and also that the optimal cut size itself scales linearly inN.
FIG. 8. Scaling collapse of the data from Fig. 7 onto a single scaling curvem̃(t/N,t)5m/N as a function oft/N at fixedt51.45 for~a!
random graphs and~b! trivalent graphs. Fort.N, data points are fitted to the power-law expression in Eq.~10! with numerical values given
in Table I.
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EXTREMAL OPTIMIZATION FOR GRAPH PARTITIONING PHYSICAL REVIEW E64 026114
The scaling functionm̃ appears to converge at large tim
to the average optimum̂m̃opt&5^mopt&/N according to a
power law,

m̃~ t/N,t!;^m̃opt&1CS t

ND 2g

~ t@N@1!. ~10!

Fitting the data in Fig. 8 to Eq.~10! for t/N.1, we obtain
for each type of graph a sequence of values^m̃opt&, C, andg
for increasingN given in Table I. In both cases we fin
values for^m̃opt& that are quite stable, while the values forg
slowly decrease withN. The variation ing as a function ofN
may be related to the fact that for a fixedt, EO’s perfor-
mance at fixedA5t/N deteriorates logarithmically withN,
as seen in Sec. IV B. Even with this variation, however,
values ofg for both types of graph are remarkably simila
g'0.4. This implies that in general, on graphs without ge
metric structure, we can halve the approximation error of
by increasing run time by a factor of 5–6. This power-la
convergence of EO is a marked improvement over the lo
rithmic convergence conjectured for simulated annea
@13# on NP-hard problems@2#.

TABLE I. Sequence of values of the fit of Eq.~10! to the data in
Fig. 8 for t/N.1 for eachN.

Graph type SizeN ^m̃opt& C g

Random 1022 0.0423 0.028 0.48
2046 0.0411 0.029 0.46
4094 0.0414 0.032 0.45
8190 0.0425 0.034 0.44

Trivalent 1022 0.1177 0.052 0.43
2046 0.1159 0.057 0.41
4094 0.1159 0.062 0.41
8190 0.1158 0.066 0.40
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Finally, the asymptotic value of̂m̃opt& obtained for the
trivalent graphs can be compared with previous simulati

@14,24#. There, the ‘‘energy’’E52114^m̃opt&/3 was calcu-
lated using the best results obtained for a set of trival
graphs. Reference@24# using simulated annealing obtaine
E520.840, while in a previous study with EO@14# we ob-
tainedE520.844(1). Our current, somewhat more carefu
extrapolation yields ^m̃opt&50.1158N or E520.845(1).
Even though this extrapolation is based on the average
rather than only the best of all runs, the very low fluctuatio
between runs@see Figs. 5~b! and 6# indicate that the result for
E would not change significantly. Thus, the replica symm
ric solution proposed in Refs.@23,25# for this version of the
GBP, which gives a value ofE52230.7378/A350.852,
appears to be excluded.

3. Ferromagnetic and geometric graphs

Unlike on the preceding graphs, EO gives significan
different results for an average run and for the best run
geometrically structured graphs~see Figs. 5 and 6!. In Fig. 6,
at least the results from the best run~averaged over all in-
stances! come close to the scaling behavior expected fr
the considerations in Sec. II C: a fit givesn'1.3 for ferro-
magnetic andn'2 for geometric graphs, while the theor
predictsn53/2 andn52, respectively. But even these be
cut sizes themselves vary significantly from one instance
another. Thus, it is certainly not useful to study the ‘‘ave
age’’ run. Instead, we will consider the result of each run
the maximal run timetmax, extract the best out ofk runs, and
study these results as a function of increasingk.

Figure 9 shows the difficulty of finding good runs wit
near-optimal results for increasing sizeN. While for ferro-
magnetic graphs it is possible that acceptable results ma
obtained without increasingk dramatically, for geometric
graphs an ever larger number of runs seems to be need
largeN. It does not appear possible to obtain consistent g
near-optimal results at a fixedk for increasingN.
s for

FIG. 9. Extrapolation plot for the best-of-k trials for ~a! ferromagnetic graphs att51.4 and~b! for geometric graphs att51.3. The data

for this plot are extracted from the results attmax, averaging the best-of-k results over 16 instances for ferromagnetic, and 64 instance
geometric graphs. For comparison, the left-most data point for eachN at k516 for ferromagnetic graphs and atk564 for geometric graphs
corresponds to the ‘‘best’’ results plotted in Fig. 6 for those graphs.
4-11
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STEFAN BOETTCHER AND ALLON G. PERCUS PHYSICAL REVIEW E64 026114
We saw in Sec. IV C 2 that for random graphs, compu
tional time is well spent on a few, long EO runs per instan
We cannot address in detail the question of whether, for g
metrically defined graphs, computational time is better sp
on k independent EO runs withtmax update steps or, say, o
a single EO run withktmax update steps. While experienc
with our data would indicate the former to be favorable,
answer to this question depends significantly onN and, of
course, on the choice oft ~see Sec. IV B!. Here we consider
this question merely for a single value,t51.3, for which we
have run EO on the same 64 geometric graphs up to 16 ti
longer thantmax, usingk54 restarts. In each of these fou
runs on an instance we recorded the best result seen at
tiplesntmax with n51, 2, 4, 8, and 16. For example, the be
of-four runs atn51 of this run time corresponds to the bes
of-k results in Fig. 9 fork54, while the best-of-four runs a
n516 would correspond to the same amount of running ti
as k564. Figure 10 shows that fewer but longer runs a
slightly more successful for largerN.

Finally, we have also used the clustering algorithm d
scribed in Sec. III C 4 and Ref.@8# on this set of 64 graphs
with t51.3. For comparison, we again use the best-of-f
runs with averages taken at timesntmax, n51, 2, and 4. Re-

@1# M. Mezard, G. Parisi, and M. A. Virasoro,Spin Glass Theory
and Beyond~World Scientific, Singapore, 1987!.

@2# G. S. Grest, C. M. Soukoulis, and K. Levin, Phys. Rev. Le
56, 1148~1986!.

FIG. 10. Equivalent run time comparison between differe
strategies to improve EO results on geometric graphs forN51022
and 2046 att51.3. The horizontal axis is proportional to the in
verse of the number of updates used,t5k3n3tmax. Filled sym-
bols refer to then51 results for geometric graphs already plotted
Fig. 9~b!, wherek varies. Open symbols on the dotted lines refer
the k54 ~best-of-four! results, wheren varies. Opaque symbols o
the dashed line refer tok54 results as well, but using initial con
ditions generated by a clustering algorithm~see Sec. III C 4!. At
sufficiently long run time all strategies are about equal, though w
fewer but longer runs having a slight edge over more and sho
runs for largeN. Even the advantages of a non-random initial co
figuration become less significant at longer run times.
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sults at short run times improve by a huge amount with s
a procedure, but its advantage is eventually lost at longer
times. While this procedure is cheap, easy, and appare
always successful for geometric graphs, our experiments
dicate that its effect may be less significant for rando
graphs and may actually result indiminishedperformance
when used for trivalent graphs in place of random init
conditions. Clearly, clustering is tailored more toward ge
metric graphs satisfying a triangular inequality.

V. CONCLUSIONS

Using the classic combinatorial optimization problem
bipartitioning graphs as an application, we have dem
strated a variety of properties of the extremal optimizat
algorithm. We have shown that for random graphs, EO e
ciently approximates the optimal solution even at large s
N, with an average approximation error decreasing over
time t as t20.4. For sparse, geometrically defined graph
finding the ideal~subdimensional! interface partitioning of
the graph becomes ever more difficult as sizeN increases.
EO, like other local search methods@26#, gets stuck ever
more often in poor local minima. However, when we co
sider the best out of multiple runs with the EO algorithm, w
recover results close to those predicted by theoretical a
ments.

We believe that many of our findings here, notably w
regard to EO’s fitness definition and the update proced
using the parametert, are generic for the algorithm. Ou
results for optimizing three-coloring and spin glasses app
to bear out such generalizations@17#. In view of this obser-
vation, a firmer theoretical understanding of our numeri
findings is desirable. The nature of EO’s performance deri
from its large fluctuations; the price we pay for this is t
loss of detailed balance, which is the theoretical basis
other physically inspired heuristics, such as simulated
nealing@13#. On the other hand, unlike in simulated anne
ing, we have the advantage of dealing with a Markov ch
that is independentof time @38#, suggesting that our metho
may indeed be amenable to theoretical analysis. We bel
that the results EO delivers, as a simple and alternative
proach to optimization, justify the need for further analys
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